
Monitoring Programs using Rewriting

Klaus Havelund
Kestrel Technology

http://ase.arc.nasa.gov/havelund
NASA Ames Research Center

Moffett Field, CA, 94035

Grigore Roşu
Research Institute for Advanced Computer Science

http://ase.arc.nasa.gov/grosu
NASA Ames Research Center

Moffett Field, CA, 94035

Abstract

We present a rewriting algorithm for efficiently testing
future time Linear Temporal Logic (LTL) formulae on finite
execution traces. The standard models of LTL are infinite
traces, reflecting the behavior of reactive and concurrent
systems which conceptually may be continuously alive. In
most past applications of LTL, theorem provers and model
checkers have been used to formally prove that down-scaled
models satisfy such LTL specifications. Our goal is instead
to use LTL for up-scaled testing of real software applica-
tions, corresponding to analyzing the conformance of fi-
nite traces against LTL formulae. We first describe what
it means for a finite trace to satisfy an LTL formula and
then suggest an optimized algorithm based on transform-
ing LTL formulae. We use the Maude rewriting logic, which
turns out to be a good notation and being supported by an
efficient rewriting engine for performing these experiments.
The work constitutes part of the Java PathExplorer (JPAX)
project, the purpose of which is to develop a flexible tool for
monitoring Java program executions.

1. Introduction

Future time Linear Temporal Logic (future time LTL),
introduced by Pnueli in 1977 [23], is a logic for specify-
ing temporal properties about reactive and concurrent sys-
tems. Future time LTL provides temporal operators that re-
fer to the future/remaining part of a trace relative to a cur-
rent point of reference. We shall use the shorthand LTL
when it is clear from the context that we mean future time

LTL. The models of LTL are infinite execution traces, re-
flecting the behavior of such systems as ideally always be-
ing ready to respond to requests, operating systems being an
example. LTL has typically been used for specifying prop-
erties of concurrent and interactive down-scaled models of
real systems, such that fully formal program proofs could
subsequently be carried out, for example using theorem
provers [15] or model checkers [10]. However, such for-
mal proof techniques are usually not scalable to real sized
systems without an extra effort to abstract the system to a
model which is then analyzed. Several systems are cur-
rently being developed that apply model checking to soft-
ware [4, 16, 3, 22, 6, 27], including our work [11, 28]. In
this paper we restrict ourselves to investigate the use of LTL
for testing whether single finite execution traces conform
to LTL formulae. The merge of testing and temporal logic
specification is an attempt to achieve the benefits of both
approaches, while avoiding some of the pitfalls from ad hoc
testing and the complexity in full-blown theorem proving
and model checking.

An important question is how to efficiently test LTL for-
mulae of finite trace models, and the main decision here
is what data structure one should use to represent the for-
mula such that it can be used to efficiently analyze the trace
as it is traversed. We will present such a data structure.
We will present and implement our logics and algorithms
in Maude [1], a high-performance system supporting both
membership equational logic [20] and rewriting logic [19].
The current version of Maude can do up to 3 million rewrit-
ings per second on 800MHz processors, and its compiled
version is intended to support 15 million rewritings per sec-

ond1. The decision to use Maude has made it very easy to
experiment with logics and algorithms. Later realizations of
the work can be done in a standard programming language
such as Java or C++. In [14] we have for example described
a data structure used to represent an LTL formula as a min-
imal finite state machine, based on a concept called binary
transition trees. This structure can then be represented and
interpreted within Java. In [25] we furthermore describe a
dynamic programming algorithm for checking LTL formu-
lae on execution traces. This algorithm evaluates a formula
bottom-up for each point in the trace, going backwards from
the final state, towards the initial state. In [9] we apply this
dynamic algorithm to past time LTL, in which case the trace
more naturally can be examined in a forward direction. In
that paper it is in addition shown how future time and past
time LTL formulae can be embedded as comments in code
and get expanded into Java code fragments to get executed
whenever reached. In [24, 21] various algorithms to gener-
ate testing automata from temporal logic formulae are de-
scribed. Our colleague Dimitra Giannakopoulou has also
implemented a B

�� chi automata inspired algorithm adapted
to finite trace LTL. The Maude rewriting implementation of
LTL described in this paper, besides its simplicity and ele-
gance, however offers a greater flexibility in experimenting
with temporal logics and is quite efficient for practical pur-
poses.

The work constitutes part of the Java PathExplorer
(JPAX) tool [13, 14] for monitoring Java program execu-
tions. JPAX facilitates automated instrumentation of Java
byte code, which then emits relevant events to an observer
during execution, see Figure 1. The observer can be running
a Maude process as a special case, hence Maude’s rewriting
engine can be used to drive a temporal logic operational se-
mantics with program execution events. The observer may
run on a different computer, in which case the events are
transmitted over a socket. When the observer receives the
events it dispatches these to a set of observer rules, each rule
performing a particular analysis that has been requested.
Observer rules are written in Java, but can call programs
written in other languages, such as in this case Maude. In
addition to checking temporal logic requirements, rules can
also be programmed to perform low level error pattern anal-
ysis of, for example, multi-threaded programs, identifying
error-prone programming practices, such as unhealthy lock-
ing disciplines that may lead to data races and/or deadlocks.
The process is driven by a specification, written in Java,
which, as in [18], consists of an instrumentation part and a
verification part. The verification specification defines the
high level requirements (as String values), usually written in
temporal logic, that events are to be checked against. The
propositions referred to in these requirements are abstract
boolean flags, and do hence not refer directly to entities in

1Personal communication by José Meseguer.

the concrete program. The instrumentation specification es-
tablishes this connection between the concrete boolean pro-
gram predicates and the abstract propositions. Hence the
instrumentation specification in particular defines what pro-
gram variables will be monitored. The instrumentation is
automatic and is performed using the bytecode engineering
tool Jtrek [2].

Java
 Program

Bytecode

Instrumented
Bytecode

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

Ev
en

t S
tre

am

Instrument

Compile

(JVM)
Execute

Instrumentation

MaudeD
is

pa
tc

he
r

Figure 1. Overview of JPAX

The idea of using temporal logic in program testing is
not new, and at our knowledge, has already been pursued
in the commercial Temporal Rover tool (TR) [5], and in
the MaC tool [18]. Both tools have greatly inspired our
work. Our basic contribution in this paper is to show how
a rewriting system, such as Maude, makes it possible to ex-
periment with monitoring logics very fast and elegantly, and
furthermore can be used as a practical program monitor-
ing engine. This approach makes it possible to formalize
ideas in a framework close to standard mathematics. The
formula transforming approach suggested is a new and ef-
ficient way of testing LTL formulae. A previous version
of the paper, published as a technical report [12], presents a
simplified action based formalization of LTL rather than the
state based more realistic framework presented here, which
is the one currently implemented in JPAX. In [13] and [14]
we describe a formalization of past time LTL (as well as
future time LTL), again illustrating the succinctness of new
logic definitions.

Section 2 contains preliminaries, including an introduc-
tion to Maude, propositional logic and the standard defini-
tion of propositional LTL with its infinite trace models. Sec-
tion 3 presents a finite trace semantics for LTL and then its
implementation in Maude. Although abstract and elegant,
this implementation is not efficient, and Section 4 presents
an efficient implementation using a formula transformation
approach. Finally, Section 5 contains conclusions and a de-
scription of future work.

2

2. Preliminaries

This section briefly introduces Maude, a rewriting-based
specification and verification system, then a relatively stan-
dard procedure to reduce propositional formulae, and then
reminds the propositional LTL with its infinite trace models.

2.1. Maude and Logics for Program Monitoring

Maude [1] is a freely distributed high-performance sys-
tem in the OBJ [8] algebraic specification family, support-
ing both rewriting logic [19] and membership equational
logic [20]. Because of its efficient rewriting engine, able
to execute 3 million rewriting steps per second on currently
standard hardware configurations, and because of its meta-
language features, Maude turns out to be an excellent tool
to create executable environments for various logics, mod-
els of computation, theorem provers, and even program-
ming languages. We were delighted to notice how easily
we could implement and efficiently validate our algorithms
for testing LTL formulae on finite event traces in Maude,
admittedly a tedious task in C++ or Java, and hence decided
to use Maude at least for the prototyping stage of our run-
time check algorithms.

We very briefly and informally remind some of Maude’s
features, referring the interested reader to the manual [1] for
more details. Maude supports modularization in the OBJ
style. There are various kinds of modules, but we are using
only functional modules which follow the pattern “fmod
<name> is <body> endfm”. The body of a functional
module consists of a collection of declarations, of which we
are using importing, sorts, subsorts, operations, variables
and equations, usually in this order.

We next introduce some modules that we think are gen-
eral enough to be used within any logical environment for
program monitoring that one would want to implement by
rewriting. The next one simply defines atomic propositions
as an abstract data type having one sort, Atom and no oper-
ations or constraints:

fmod ATOM is sort Atom . endfm

The actual names of atomic propositions will be automat-
ically generated in another module that extends ATOM, as
constants of sort Atom. These will be generated by the ob-
server at the initialization of monitoring, from the actual
properties that one wants to monitor.

An important aspect of program monitoring is that of an
(abstract) execution trace, which consists of a finite list of
events. We abstract a single event by a list of atoms, those
that hold after the action that generated the event took place.
The values of the atomic propositions are updated by the ob-
server according to the actual state of the executing program
and then sent to Maude as a term of sort Event:

fmod TRACE is protecting ATOM .
sorts Event Event* Trace .
subsorts Atom < Event < Event* Trace .
op nil : -> Event .
op __ : Atom Event -> Event [prec 23] .
op _* : Event -> Event* .
op _,_ : Event Trace -> Trace [prec 25] .

endfm

The statement protecting ATOM imports the module
ATOM. The above is a compact way to use mix-fix2 and order-
sorted notation to define an abstract data type of traces: a
trace is a comma separated list of events, where an event is
itself a list of atoms. The subsorts declaration declares
Atom to be a subsort of Event, which in turn is a subsort of
Event* as well as of Trace. Since elements of a subsort
can occur as elements of a supersort without explicit lifting,
we have as a consequence that a single event is also a trace,
consisting of this one event. Likewise, an atomic propo-
sition can occur as an event, containing only this atomic
proposition. Note that there is no definition of an empty
trace. Operations can have attributes, such as the prece-
dences above, which are written between square brackets.
The attribute prec gives a precedence to an operator3, thus
eliminating the need for most parentheses. Notice the spe-
cial sort Event* which stay for terminal events, i.e., events
that occur at the end of traces. Any event can potentially
occur at the end of a trace. It is often the case that ending
events are treated differently, like in the case of finite trace
linear temporal logic; for this reason, we have introduced
the operation _* which marks an event as terminal.

Syntax and semantics are basic requirements to any
logic, in particular to those logics needed for monitoring.
The following module introduces what we believe are the
basic ingredients of monitoring logics. We found the fol-
lowing very useful for our logics, but of course, the user is
free to change it if he/she finds it inconvenient:

fmod LOGICS-BASIC is protecting TRACE .
sort Formula . subsort Atom < Formula .
ops true false : -> Formula .
op [_] : Formula -> Bool [strat (1 0)] .
eq [true] = true . eq [false] = false .

vars A A’ : Atom . var T : Trace .
var E : Event . var E* : Event* .
op _{_} : Formula Event* -> Formula [prec 10] .
eq true{E*} = true . eq false{E*} = false .
eq A{nil} = false .
eq A{A’} = if A == A’ then true else false fi .
eq A{A’ E} = if A == A’ then true else A{E} fi .
eq A{E *} = A{E} .

op _|=_ : Trace Formula -> Bool [prec 30] .
eq T |= true = true .
eq T |= false = false .
eq E |= A = [A{E}] .
eq E,T |= A = E |= A .

endfm

The first block of declarations introduces the sort Formula
which can be thought of as a generic sort for any well-

2Underscores are places for arguments.
3The lower the precedence number, the tighter the binding.

3

formed formula in any logic. There are two designated for-
mulae, namely true and false, with the obvious meaning,
together with a “projection”, denoted [_], of any formula
into a boolean expression. The only role of this operation is
to check whether a logical formula is violated or not, each
logic being allowed to refine this operator according to its
policy. Its attribute says that this operation should always be
evaluated eagerly; numbers in the strategy declaration stay
for argument positions that are numbered from left to right,
0 staying for the operator itself. The sort Bool is builtin
to Maude and has two constants true and false which
are different from those of sort Formula, and a generic op-
erator if_then_else_fi. The second block defines the
operation _{_} which takes a formula and an event and
yields another formula. The intuition for this operation is
that it “evaluates” the formula in the new state and produces
a proof obligation as another formula for the subsequent
events, if needed. If the returned formula is true or false
then it means that the formula was satisfied or violated, re-
gardless of the rest of the execution trace; in this case, a
message can be returned by the observer. As we’ll soon see,
each logic will further complete the definition of this oper-
ator. Finally, the satisfaction relation is defined. That is,
two equations deal with the formulae true and false and
should be obvious. The last two equations state that a trace,
consisting either of a single event or of several, satisfies an
atomic proposition if evaluating that atomic proposition on
the event yields true.

2.2. Propositional Calculus

A rewriting decision procedure for propositional calcu-
lus due to Hsiang [17] is adapted and presented. It pro-
vides the usual connectives _/_ (and), _++_ (exclusive
or), _\/_ (or), !_ (negation), _->_ (implication), and _<-

>_(equivalence). The procedure reduces tautology formu-
lae to the constant true and all the others to some canonical
form modulo associativity and commutativity. An unusual
aspect of this procedure is that the canonical forms consist
of exclusive or of conjunctions. Even if propositional cal-
culus is very basic to almost any logical environment, we
decided to keep it as a separate logic instead of being part
of the logic infrastructure of JPAX. One reason for this de-
cision is that its semantics could be in conflict with other
logics, for example ones in which conjunctive normal forms
are desired.

An OBJ3 code for this procedure appeared in [8]. Below
we give its obvious translation to Maude together with its fi-
nite trace semantics, noticing that Hsiang [17] showed that
this rewriting system modulo associativity and commutativ-
ity is Church-Rosser and terminates. The Maude team was
probably also inspired by this procedure, since the builtin
BOOL module is very similar.

fmod PROP-CALC is extending LOGICS-BASIC .
*** Constructors ***

op _/_ : Formula Formula -> Formula
[assoc comm prec 15] .

op _++_ : Formula Formula -> Formula
[assoc comm prec 17] .

vars X Y Z : Formula .
eq true /\ X = X .
eq false /\ X = false .
eq X /\ X = X .
eq false ++ X = X .
eq X ++ X = false .
eq X /\ (Y ++ Z) = X /\ Y ++ X /\ Z .

*** Derived operators ***
op _\/_ : Formula Formula -> Formula

[assoc prec 19] .
op !_ : Formula -> Formula [prec 13] .
op _->_ : Formula Formula -> Formula [prec 21] .
op _<->_ : Formula Formula -> Formula [prec 23] .
eq X \/ Y = X /\ Y ++ X ++ Y .
eq ! X = true ++ X .
eq X -> Y = true ++ X ++ X /\ Y .
eq X <-> Y = true ++ X ++ Y .

*** Finite trace semantics
var T : Trace . var E* : Event* .
eq T |= X /\ Y = T |= X and T |= Y .
eq T |= X ++ Y = T |= X xor T |= Y .
eq (X /\ Y){E*} = X{E*} /\ Y{E*} .
eq (X ++ Y){E*} = X{E*} ++ Y{E*} .
eq [X /\ Y] = [X] and [Y] .
eq [X ++ Y] = [X] xor [Y] .

endfm

Operators are again declared in mix-fix notation and have
attributes between squared brackets, such as assoc, comm
and prec <number>. Once the module above is loaded4

in Maude, reductions can be done as follows:

red a -> b /\ c <-> (a -> b) /\ (a -> c) .
***> should be true

red a <-> ! b .
***> should be a ++ b

Notice that one should first declare the constants a, b and
c. The last six equations are related to the semantics of
propositional calculus. Since [_]_ is eagerly evaluated,
[X] will first evaluate X using propositional calculus rea-
soning and then will apply one of the last two equations
if needed; these equations will not be applied normally in
practical reductions, they are useful only in the correctness
proof in Theorem 1.

2.3. Linear Temporal Logic

Classical LTL provides in addition to the propositional
logic operators the temporal operators []_ (always), <>_
(eventually), _U_ (until), and o_ (next). An LTL standard
model is a function

���������
	��
for some set of atomic

propositions , i.e., an infinite trace over the alphabet
	��

,
which maps each time point (a natural number) into the set
of propositions that hold at that point. The operators have
the following interpretation on such an infinite trace. As-
sume formulae X and Y. The formula []X holds if X holds
in all time points, while <>X holds if X holds in some future
time point. The formula X U Y (X until Y) holds if Y holds

4Either by typing it or using the command in <filename>.

4

in some future time point, and until then X holds (so we con-
sider strict until). Finally, o X holds for a trace if X holds in
the suffix trace starting in the next (the second) time point.
The propositional operators have their obvious meaning. As
an example illustrating the semantics, the formula [](X ->

<>Y) is true if for any time point ([]) it holds that if X is true
then eventually (<>) Y is true. Another similar property is
[](X -> o(Y U Z)), which states that whenever X holds
then from the next state Y holds until eventually Z holds.
It’s standard to define a core LTL using only atomic propo-
sitions, the propositional operators !_ (not) and _/_ (and),
and the temporal operators o_ and _U_, and then define all
other propositional and temporal operators as derived con-
structs. Standard equations are <>X = true U X and []X

= !<>!X.

3. Finite Trace Linear Temporal Logic

As already explained, our goal is to develop a framework
for testing software systems using temporal logic. Tests
are performed on finite execution traces and we therefore
need to formalize what it means for a finite trace to sat-
isfy an LTL formula. We first present a semantics of finite
trace LTL using standard mathematical notation. Then we
present a specification in Maude of a finite trace semantics.
Whereas the former semantics uses universal and existential
quantification, the second Maude specification is defined
using recursive definitions that have a straightforward op-
erational rewriting interpretation and which therefore can
be executed.

3.1. Finite Trace Semantics

As mentioned in Subsection 2.1, a trace is viewed as a
sequence of program states, each state denoting the set of
propositions that hold at that state. We shall outline the fi-
nite trace LTL semantics using standard mathematical no-
tation rather than Maude notation. Assume two total func-
tions on traces, head

�
Trace

�
Event returning the head

event of a trace and length returning the length of a finite
trace, and a partial function tail

�
Trace

�
Trace for tak-

ing the tail of a trace. That is, head ����� �����
head ��� �	� � ,

tail ����� ���
� �
, and length � e ��� �

and length ����� ���
�
��

length � ��� . Assume further for any trace
�
, that

���
denotes

the suffix trace that starts at position � , with positions start-
ing at

�
. The satisfaction relation � ���

Trace � Formula

defines when a trace
�

satisfies a formula � , written
� � � � ,

and is defined inductively over the structure of the formulae
as follows, where A is any atomic proposition and X and Y

are any formulae:

��� �
A iff ��� head � � ���� �
true iff true,��� �
false iff false,��� �
X /\ Y iff

��� �
X and

�!� �
Y,��� �

X ++ Y iff
��� �

X xor
��� �

Y,��� �
[]X iff �#" �%$'&)(+*-,/.)0 � � � �1� 2�� �

X��� �
<>X iff �43 �%$'&)(+*-,/.)0 � � � �1� 2 � �

X��� �
X U Y iff �43 �%$'&)(+*-,/.)0 � � � � � � 2 � �

Y and �#"6587 � �9�;:8� �
X
���� �

o X iff (if tail � � � is defined then
.;<�=)& � � ��� �

X else
��� �

X)

Notice that finite trace LTL can behave quite differently
from standard infinite trace LTL. For example, there are for-
mulae which are not valid in infinite trace LTL but valid
in finite trace LTL, such as <>([] A \/ [] ! A), and
there are formulae which are satisfiable in infinite trace LTL
and not satisfiable in finite trace LTL, such as the negation
of the above. The formula above is satisfied by any finite
trace because the last event/state in the trace either contains
A or it doesn’t.

3.2. Finite Trace Semantics in Maude

Now it can be relatively easily seen that the following
Maude specification correctly “implements” the finite trace
semantics of LTL described above. The only important
deviation from the rigorous mathematical formulation de-
scribed above is that the quantifiers over finite sets of in-
dexes are expressed recursively.

fmod LTL is extending PROP-CALC .
*** syntax

op []_ : Formula -> Formula [prec 11] .
op <>_ : Formula -> Formula [prec 11].
op _U_ : Formula Formula -> Formula [prec 14] .
op o_ : Formula -> Formula [prec 11] .

*** semantics
vars X Y : Formula .
var E : Event . var T : Trace .
eq E |= [] X = E |= X .
eq E,T |= [] X = E,T |= X and T |= [] X .
eq E |= <> X = E |= X .
eq E,T |= <> X = E,T |= X or T |= <> X .
eq E |= X U Y = E |= Y .
eq E,T |= X U Y =
E,T |= Y or E,T |= X and T |= X U Y .

eq E |= o X = E |= X .
eq E,T |= o X = T |= X .

endfm

Notice that only the temporal operators needed declarations
and semantics, the others being already defined in PROP-

CALC and LOGICS-BASIC, and that the definitions that in-
volved the functions head and tail were replaced by two al-
ternative equations. One can now directly verify LTL prop-
erties on finite traces using Maude’s rewriting engine, by
commands such as

red a b, a, c a, a b, c b, a b, a, c a, a b, c b
|= [] (a -> <> b) .

red a b, a, c a, a b, c b, a b, a, c a, a b, c b
|= <> (! [](a -> <> b)) .

which should return the expected answers, i.e., true and
false, respectively. The algorithm above does nothing but
blindly follows the mathematical definition of satisfaction

5

and even runs reasonably fast for relatively small traces. For
example, it takes5 about 30ms (74k rewrite steps) to reduce
the first formula above and less than 1s (254k rewrite steps)
to reduce the second on traces of 100 events (10 times larger
than the above). Unfortunately, this algorithm doesn’t seem
to be tractable for large event traces, even if run on very fast
platforms. As a concrete practical example, it took Maude
7.3 million rewriting steps (3 seconds) to reduce the first
formula above and 2.4 billion steps (1000 seconds) for the
second on traces of 1,000 events; it couldn’t finish in one
night (more than 10 hours) the reduction of the second for-
mula on a trace of 10,000 events. Since the event traces
generated by an executing program can easily be larger than
10,000 events, the trivial algorithm above can not be used
in practice.

A rigorous complexity analysis of the algorithm above
is hard (because it has to take into consideration the eval-
uation strategy used by Maude for terms of sort Bool)
and not worth the effort. However, a simplified analysis
can be easily made if one only counts the maximum num-
ber of atoms of the form event |= atom that can occur
during the rewriting of a satisfaction term, as if all the
boolean reductions were applied after all the other reduc-
tions: let us consider a formula X = [] ([] (... ([]

A) ...)) where the always operator is nested � times,
and a trace T of size � , and let

� ��� ��� �
be the total num-

ber of basic satisfactions event |= atom that occur in the
normal form of the term T |= X if no boolean reductions
were applied. Then, the recurrence formula

� ��� ��� � �
� ����� � ��� � � ��� ����� �1�

follows immediately from the
specification above. Since �
	� � � ��	���� � � 	 ������ �

, it follows
that

� ��� ��� ��� ��	� �
, that is,

� ��� ��� � ��� ����	 �
, which is

of course unacceptable.

4. An Efficient Rewriting Algorithm

In this section we shall present a more efficient rewrit-
ing semantics for LTL, based on the idea of consuming the
events in the trace, one by one, and updating a data structure
(which is also a formula) corresponding to the effect of the
event on the value of the formula. Our decision to write an
operational semantics this way was motivated by an attempt
to program such an algorithm in Java, where such a solution
would be the most natural. As it turns out, it also yields a
more efficient rewriting system.

4.1. The Main Algorithm

We implement this algorithm by extending the definition
of the operation _{_} : Formula Event* -> Formula

to temporal operators, with the following intuition. As-
suming a trace E,T consisting of an event E followed by

5On a 1.7GHz, 1Gb memory PC.

a trace T, then a formula X holds on this trace if and only if
X{E} holds on the remaining trace T. If the event E is ter-
minal then X{E *} holds if and only if X holds under stan-
dard LTL semantics on the infinite trace containing only the
event E.

fmod LTL-REVISED is protecting LTL .
vars X Y : Formula .
var E : Event . var T : Trace .
eq ([] X){E} = [] X /\ X{E} .
eq ([] X){E *} = X{E *} .
eq (<> X){E} = <> X \/ X{E} .
eq (<> X){E *} = X{E *} .
eq (o X){E} = X .
eq (o X){E *} = X{E *} .
eq (X U Y){E} = Y{E} \/ X{E} /\ X U Y .
eq (X U Y){E *} = Y{E *} .

op _|-_ : Trace Formula -> Bool [strat (2 0)] .
eq E |- X = [X{E *}] .
eq E,T |- X = T |- X{E} .

endfm

The rule for the temporal operator []X should be read as
follows: the formula X must hold now (X{E}) and also in
the future ([]X). The sub-expression X{E} represents the
formula that must hold for the rest of the trace for X to
hold now. As an example, consider the formula []<>A.
This formula modified by an event B C (so A doesn’t hold)
yields the rewritings sequence ([]<>A) � B C ��� []<>A

/\ (<>A) � B C ��� []<>A /\ (<>A \/ A � B C �)
� []<>A /\ (<>A \/ false) � []<>A /\ <>A,
while the same formula transformed by A C (so A holds)
yields ([]<>A) � A C ��� []<>A /\ (<>A) � A C ���
[]<>A /\ (<>A \/ A � A C �) � []<>A /\ (<>A \/

true) � []<>A /\ true � []<>A, i.e., the same
formula. Note that these rules spell out the semantics of
each temporal operator. An alternative solution would be
to define some operators in terms of others, as is typically
the case in the standard semantics for LTL. For example,
we could introduce an equation of the form: <>X = true

U X, and then eliminate the rewriting rule for <>X in the
above module. This turns out to be less efficient because
more rewrites are needed.

This module eventually defines a new satisfaction rela-
tion _|-_ between traces and formulae. The term T |-

X is evaluated now by an iterative traversal over the trace,
where each event transforms the formula. Note that the new
formula that is generated in each step is always kept small
by being reduced to normal form via the equations in the
PROP-CALC module in Subsection 2.2. In fact, the new
formula consists of boolean combinations of subformulae
of the initial formula, kept in a minimal canonical form.
Therefore, the algorithm is linear in the size of the trace,
and worst-case exponential in the size of the formula. How-
ever, it seems that this exponential complexity in the size of
the formula is more of theoretical importance than practi-
cal, since in general the size of the formula grew only twice
or less in our experiments. If speed is crucial and the above

6

procedure turns out to be still too slow, then one can stat-
ically generate all formulae in which a formula can trans-
form and store them as the states of an automaton, the edges
being the possible events. Then when a new event is gener-
ated by the monitored program, one could directly go to the
“next” state of the automaton without any logical reason-
ing. We have implemented an improved version of such a
procedure (in which only a minimal subset of atomic propo-
sitions are evaluated); details regarding this implementation
will appear elsewhere, but an informal description can be
found in [14].

Verification results are very encouraging and show that
this optimized semantics is orders of magnitudes faster than
the first semantics. Traces of less than 10,000 events are
verified in milliseconds, while traces of 100,000 events
never needed more than 3 seconds. This technique scales
quite well; we were able to monitor even traces of hun-
dreds of millions events. As a concrete example, we cre-
ated an artificial trace by repeating 10 million times the 10
event trace a b, a, c a, a b, c b, a b, a, c a,

a b, c b, and then checked it against the formula [](a

-> <> b). There were needed 4.9 billion rewriting steps
for a total of about 1,500 seconds.

4.2. Correctness and Completeness

In this subsection we prove that the algorithm presented
above is correct and complete with respect to the semantics
of finite trace LTL presented in Section 3. The proof is done
completely in Maude, but since Maude is not intended to be
a theorem prover, we actually have to generate the proof
obligations by hand. However, the proof obligations below
could be automatically generated by a proof assistant like
KUMO [7] or a theorem prover like PVS [26]6.

Theorem: For any trace T and any formula X, T |= X if
and only if T |- X.

Proof: By induction, both on traces and formulae. We
first need to prove two lemmas, namely that the following
two equations hold in the context of both LTL and LTL-

REVISED:

�)" E : Event, X : Formula
�

E |= X
�

E |- X,

�)" E : Event, T : Trace, X : Formula
�

E T |= X
�

T |= X{E}.

We prove them by structural induction on the formula X.
Constants e and x are needed in order to prove the first
lemma via the theorem of constants. However, since we
prove the second lemma by structural induction on X, we not
only have to add two constants e and t for the universally

6We’ve already done it in PVS, but we prefer to use only Maude in this
paper.

quantified variables E and T, but also two other constants
y and z standing for formulas which can be combined via
operators to give other formulas. The induction hypothesis
for the second lemma is added to the following specification
as equations. Notice that we merged the two proofs to save
space. A proof assistant like KUMO or PVS would prove
them independently, generating only the needed constants
for each of them.

fmod PROOF-OF-LEMMAS is
extending LTL .
extending LTL-REVISED .
op e : -> Event . op t : -> Trace .
ops a b c : -> Atom . ops y z : -> Formula .
eq e |= y = e |- y .
eq e |= z = e |- z .
eq e,t |= y = t |= y{e} .
eq e,t |= z = t |= z{e} .
eq b{e} = true .
eq c{e} = false .

endfm

It is worth reminding the reader at this stage that the func-
tional modules in Maude have initial semantics, so proofs
by induction are valid. Before proceeding further, the reader
should be aware of the operational semantics of the opera-
tion _==_, namely that the two argument terms are first re-
duced to their normal forms which are then compared syn-
tactically (but modulo associativity and commutativity); it
returns true if and only if the two normal forms are equal.
Therefore, the answer truemeans that the two terms are in-
deed semantically equal, while false only means that they
couldn’t be proved equal; they can still be equal.

red (e |= a == e |- a)
and (e |= true == e |- true)
and (e |= false == e |- false)
and (e |= y /\ z == e |- y /\ z)
and (e |= y ++ z == e |- y ++ z)
and (e |= [] y == e |- [] y)
and (e |= <> y == e |- <> y)
and (e |= y U z == e |- y U z)
and (e |= o y == e |- o y)

and (e,t |= true == t |= true{e})
and (e,t |= false == t |= false{e})
and (e,t |= b == t |= b{e})
and (e,t |= c == t |= c{e})
and (e,t |= y /\ z == t |= (y /\ z){e})
and (e,t |= y ++ z == t |= (y ++ z){e})
and (e,t |= [] y == t |= ([] y){e})
and (e,t |= <> y == t |= (<> y){e})
and (e,t |= y U z == t |= (y U z){e})
and (e,t |= o y == t |= (o y){e}) .

It took Maude 129 reductions to prove these lemmas.
Therefore, one can safely add now these lemmas as follows:

fmod LEMMAS is
protecting LTL .
protecting LTL-REVISED .
var E : Event .
var T : Trace . var X : Formula .
eq E |= X = E |- X .
eq E,T |= X = T |= X{E} .

endfm

We can now prove the theorem, by induction on traces.
More precisely, we show:

7

 � E �
, and

 � T �
implies � E,T �

, for all events E and traces
T,

where � T �
is the predicate “for all formulas X, T |= X iff

T |- X”. This induction schema can be easily formalized
in Maude as follows:

fmod PROOF-OF-THEOREM is protecting LEMMAS .
op e : -> Event .
op t : -> Trace . op x : -> Formula .
var X : Formula .
eq t |= X = t |- X .

endfm

red e |= x == e |- x .
red e,t |= x == e,t |- x .

Notice the difference in role between the constant x and the
variable X. The first reduction proves the base case of the in-
duction, using the theorem of constants for the universally
quantified variable X. In order to prove the induction step,
we first applied the theorem of constants for the universally
quantified variables E and T, then added � t �

to the hypoth-
esis (the equation “eq t |= X = t |- X .”), and then
reduced � e t

�
using again the theorem of constants for

the universally quantified variable X. Like in the proofs of
the lemmas, we merged the two proofs to save space.

5. Conclusions and Future Work

We have presented a finite trace semantics of LTL in
the Maude logic together with a much more efficient ver-
sion based on formula transforming state changes. The for-
mula transformation approach can be regarded as a self con-
tained result with interest to at least the rewriting and tem-
poral logics communities. However, what perhaps makes it
more interesting is that its integration into the general pro-
gram monitoring framework JPAX seems to be quite effi-
cient for practical purposes, allowing an elegant flexibility
in the choice and design of requirement languages. This
can be useful not only for research projects and educational
purposes, but also for real-life projects, where requirement
languages may be domain or application specific. In prin-
ciple what Maude provides is a static parsing environment
for defining syntax, combined with a rewrite-based dynamic
execution environment for defining efficient semantics over
the parse trees. It is our goal to examine the feasibility of
this approach on a selection of NASA software systems.

A current research activity is, however, to find yet more
efficient representations of future time LTL formula for the
purpose of achieving an absolute optimal algorithm for test-
ing their satisfaction on execution traces. This becomes es-
pecially crucial for an implementation in a standard pro-
gramming language such as Java. In [14] we describe such
a provably minimal finite state machine representation. An
efficient dynamic programming algorithm is furthermore

described in [25], although it examines the trace backwards,
requiring the trace to be stored. As it turns out, this algo-
rithm applies more naturally to the checking of past time
LTL, since this can be done by a forward examination of the
trace. Of future work can be mentioned that we will exper-
iment with new logics in Maude, such as interval and real
time logics and UML notations. We have already in [13, 14]
described how past time LTL can be succinctly defined in
Maude (note that this work is different from the dynamic
programming algorithm for past time LTL just mentioned).

A general question is how such requirement monitoring
can be tied into the different levels of the development cy-
cle. With the composition of the specification into a verifi-
cation part that refers to abstract propositions, and an instru-
mentation part that relate these to concrete program entities,
the verification part can potentially be written before the
program is developed. Hence, Maude can be used during
the early phases of a project to write down requirements,
which can then can be tested later in the implementation
phase. One can further imagine that the requirements writ-
ten in Maude themselves can be subject to various forms of
formal analysis, also programmed in Maude, such as rapid
prototyping, symbolic simulation, static analysis, theorem
proving, and model checking. We have for example consid-
ered formulating state machines in Maude and use these for
monitoring. Such state machines are obvious candidates for
the above mentioned forms of analysis.

As described in [13, 14] JPAX provides in addition to
specification based monitoring also a capability of check-
ing error patterns in multi-threaded programs. Future work
will try to develop new algorithms for detecting other kinds
of concurrency errors than data races and deadlocks. This
includes studying completely new functionalities of the sys-
tem, such as guided execution via code instrumentation
to explore more of the possible interleavings of a non-
deterministic concurrent program during testing.

Last, but not least, program monitoring can not only be
applied during program testing, but, perhaps more interest-
ingly, during operation, and be used to influence the pro-
gram behavior in case requirements get violated. Our future
research will focus on this aspect.

References

[1] M. Clavel, F. J. Durán, S. Eker, P. Lincoln, N. Martı́-
Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and Programming in Rewriting Logic,
Mar. 1999. Maude System documentation at
http://maude.csl.sri.com/papers.

[2] S. Cohen. Jtrek. Compaq,
http://www.compaq.com/java/download/jtrek.

[3] J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera : Extracting Finite-
state Models from Java Source Code. In Proceedings of

8

the 22nd International Conference on Software Engineer-
ing, Limerich, Ireland, June 2000. ACM Press.

[4] C. Demartini, R. Iosif, and R. Sisto. A Deadlock Detection
Tool for Concurrent Java Programs. Software Practice and
Experience, 29(7):577–603, July 1999.

[5] D. Drusinsky. The Temporal Rover and the ATG Rover. In
K. Havelund, J. Penix, and W. Visser, editors, SPIN Model
Checking and Software Verification, volume 1885 of Lecture
Notes in Computer Science, pages 323–330. Springer, 2000.

[6] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, pages 174–186,
Paris, France, Jan. 1997.

[7] J. Goguen, K. Lin, G. Roşu, A. Mori, and B. Warinschi. An
Overview of the Tatami Project. In K. Futatsugi, T. Tamai,
and A. Nakagawa, editors, Cafe: An Industrial-Strength Al-
gebraic Formal Method. Elsevier, to appear, 2000.

[8] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: Algebraic Specifi-
cation in Action. Kluwer, 2000.

[9] K. Havelund, S. Johnson, and G. Roşu. Specification and
Error Pattern Based Program Monitoring. In Proceedings of
the European Space Agency workshop on On-Board Auton-
omy, Noordwijk, The Netherlands, Oct. 2001.

[10] K. Havelund, M. R. Lowry, and J. Penix. Formal Analysis
of a Space Craft Controller using SPIN. IEEE Transactions
on Software Engineering, 27(8):749–765, Aug. 2001. An
earlier version occurred in the Proceedings of the 4th SPIN
workshop, 1998, Paris, France.

[11] K. Havelund and T. Pressburger. Model Checking Java
Programs using Java PathFinder. International Journal on
Software Tools for Technology Transfer, 2(4):366–381, Apr.
2000. Special issue of STTT containing selected submis-
sions to the 4th SPIN workshop, Paris, France, 1998.

[12] K. Havelund and G. Roşu. Testing Linear Temporal Logic
Formulae on Finite Execution Traces. RIACS Technical
report, http://ase.arc.nasa.gov/pax, November
2000.

[13] K. Havelund and G. Roşu. Java PathExplorer – A Runtime
Verification Tool. In Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS’01), Montreal, Canada, June 2001.

[14] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. In K. Havelund and G. Roşu, editors,
Proceedings of the First International Workshop on Runtime
Verification (RV’01), volume 55 of Electronic Notes in Theo-
retical Computer Science, pages 97–114, Paris, France, July
2001. Elsevier Science.

[15] K. Havelund and N. Shankar. Experiments in Theorem Prov-
ing and Model Checking for Protocol Verification. In M. C.
Gaudel and J. Woodcock, editors, FME’96: Industrial Ben-
efit and Advances in Formal Methods, volume 1051 of Lec-
ture Notes in Computer Science, pages 662–681. Springer,
1996.

[16] G. J. Holzmann and M. H. Smith. A Practical Method
for Verifying Event-Driven Software. In Proceedings of
ICSE’99, International Conference on Software Engineer-
ing, Los Angeles, California, USA, May 1999. IEEE/ACM.

[17] J. Hsiang. Refutational Theorem Proving using Term
Rewriting Systems. PhD thesis, University of Illinois at
Champaign-Urbana, 1981.

[18] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime Assurance Based on For-
mal Specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1999.

[19] J. Meseguer. Conditional Rewriting Logic as a Unified
Model of Concurrency. Theoretical Computer Science,
pages 73–155, 1992.

[20] J. Meseguer. Membership Algebra as a Logical Framework
for Equational Specification. In Proceedings, WADT’97,
volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1998.

[21] T. O’Malley, D. Richardson, and L. Dillon. Efficient
Specification-Based Oracles for Critical Systems. In In Pro-
ceedings of the California Software Symposium, 1996.

[22] D. Y. Park, U. Stern, and D. L. Dill. Java Model Checking.
In Proceedings of the First International Workshop on Auto-
mated Program Analysis, Testing and Verification, Limerick,
Ireland, June 2000.

[23] A. Pnueli. The Temporal Logic of Programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer
Science, pages 46–77, 1977.

[24] D. J. Richardson, S. L. Aha, and T. O. O’Malley.
Specification-Based Test Oracles for Reactive Systems. In
Proceedings of the Fourteenth International Conference on
Software Engineering, Melbourne, Australia, pages 105–
118, 1992.

[25] G. Roşu and K. Havelund. Synthesizing Dy-
namic Programming Algorithms from Linear Tem-
poral Logic Formulae. RIACS Technical report,
http://ase.arc.nasa.gov/pax, January 2001.

[26] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Com-
puter Science Laboratory, SRI International, Menlo Park,
CA, Feb. 1993. Also appears in Tutorial Notes, Formal
Methods Europe ’93: Industrial-Strength Formal Methods,
pages 357–406, Odense, Denmark, April 1993.

[27] S. D. Stoller. Model-Checking Multi-threaded Distributed
Java Programs. In K. Havelund, J. Penix, and W. Visser, ed-
itors, SPIN Model Checking and Software Verification, vol-
ume 1885 of Lecture Notes in Computer Science, pages 224–
244. Springer, 2000.

[28] W. Visser, K. Havelund, G. Brat, and S. Park. Model Check-
ing Programs. In Proceedings of ASE’2000: The 15th IEEE
International Conference on Automated Software Engineer-
ing. IEEE CS Press, Sept. 2000.

9

